Finished Chapter 7 yesterday
Today is chapter 8 - Gas Laws

Gases have Variable shape \& Variable Volume

Solid
20% empty space

liquid 25-30 empty Space
$\rightleftarrows \quad \hat{l}$

Gas 99.9\% eurity Spore

Properties of Gas

- Volume (1)
- Mass (moles)
- Temperature (k)
\Rightarrow Pressure (atm)

Real Gasses are Complex.
Simplify the model to make a workable model
\Rightarrow Ideal Gas

- No attractive forces between molecules
- Travel in straight lines, unaffected by gravity and intermolecular attractive forces. They travel until they hit something. The change speed \$ direction only through Collisions.
- 99.9% Volume is empty space, the size of the gas molecule is irrelevent.
\Rightarrow Treat gas as a print mass, A mass with no volume.

Apparatus

α proportional (How. they)

Test the 4 variables Hold 2 constant \& rook at the relationship of remaining 2
Two types of relationships
directly proportional $\uparrow A \propto B \uparrow$
inversely proportional $\hat{\uparrow} A \propto \frac{1}{B} \downarrow$
(1) Pressure vs. Volume (Hold Temp \& moles) $\uparrow p \propto \frac{1}{V} \downarrow$ constant

$$
\begin{aligned}
\text { pressure }= & \text { Force } \times \text { Area } \\
& \uparrow \\
& \text { collisions wall }
\end{aligned}
$$

Pressure inversely proportional to volume

$$
P \propto \frac{1}{v}
$$

(2) Pressure vs Temp (hold volume a moles) $\uparrow P \propto T \uparrow$

Increase in temp

Increase in Pressure

Pressure is directly proportional to temp $P \propto T$
(3) Pressure vs. Moles (Temp \& Volume Coast). $\uparrow P \propto \cap \uparrow$

Pressure and moles are directly proportional

$$
P \propto n
$$

Conclusion of 3 experiments

$$
\begin{aligned}
& P \propto \frac{1}{v} \\
& P \propto \frac{T}{P} \propto n
\end{aligned}
$$

$P \propto \frac{n T}{V}$ How the variables relate need an equality

Proportionality constant looks at the relationship between variables and relates the two with an equality

$$
\begin{aligned}
& \uparrow y \propto x \uparrow \\
& y=m x+c^{\alpha}
\end{aligned}
$$

Find the proportionality constant

Ideal Gas Law

$$
\begin{aligned}
& P V=n R T
\end{aligned} \left\lvert\, \begin{aligned}
& \text { Universal Gas Constant } \\
& \text { Units }
\end{aligned}\right.
$$

units
$P=$ atmosphere atm

$$
V=\text { Liters } \quad L
$$

$n=$ moles moles
$T=$ Temperature k

Pressure Force per unit area
atmosphere = the pressure the atmosphere of earth

$$
14.7 \mathrm{lbs} / \mathrm{in}^{2}=14.7 \mathrm{psi}=1 \mathrm{~atm}
$$

$m m i t y=$ millimeters of mercury (Barometric pressure)

$$
\underset{\downarrow}{\uparrow} \text { Pressure }=\mathrm{Hg}_{\mathrm{g}} \uparrow
$$

maH_{9}
Exact definition

$$
\text { late }=760 \mathrm{mmHg}
$$

$$
1 \text { Torr }=1 \mathrm{mmHg}
$$

$$
1 \mathrm{~atm}=760 \text { Torr }=760 \mathrm{mmHg}
$$

3 most Common units of pressure used.

$$
30.0 \mathrm{inHg} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}=762 \mathrm{mmilg}
$$

3 main types of Gas Law Problems

- Ideal Gas Law (1sct variables)
- Combined Gas haw (Changing conditions, 2 set variate)
- Dalton's Law of Partial Pressure (mull. gases)

Ex Ideal Gas Law
A contamer holds 0.0362 moles of nitrogen gas.
The Container has a volume of 100 mL and a temperature of $25^{\circ} \mathrm{C}$. What is the pressure in the container?
$P V=n R T \quad 4$ variables \& a Constant ($R=0.0821 \frac{\mathrm{Lahm}}{\text { max }}$)
$P=?$
Given 3 find the $4^{\text {th }}$

$$
\begin{aligned}
& V=100 . \mathrm{mL} \times \frac{1 \mathrm{~L}}{100 \mathrm{LL}}=0.100 \mathrm{~L} \\
& n=0.0362 \mathrm{Lmoles} \\
& R=0.0821 \frac{\mathrm{hatm}}{\mathrm{~mol}} \\
& T=25^{\circ} \mathrm{C}+273.15=298.15 \mathrm{~K}
\end{aligned}
$$

$$
\frac{P V}{X}=\frac{n R T}{x} \quad \text { solve for } P
$$

$$
\begin{aligned}
& =8.86107763 \mathrm{~atm} \\
& =8.86 \mathrm{~atm}
\end{aligned}
$$

Steps to Solve

- make a table
- Parce Problem
- ID unknown variable
- Convert any variable not in Same units as R

$$
\frac{1 \text { atm }}{\text { mol K }}
$$

- Solve PV =ART for unknown
- Plug in values
- Call
- Sigfigs $\&$ units

Ex Ideal Gas Law
A Can with a volume of 22.4 L has 6.753 g of nitrogen gas at $24.6^{\circ} \mathrm{C}$. What is the pressure in the can?

$$
\begin{aligned}
& P=\text { ? } \\
& \text { HOFBrINCl } \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Br}_{2} \mathrm{I}_{2}\left(\mathrm{~N}_{2}\right) \mathrm{Cl}_{2} \\
& v=22.4 \mathrm{~L} \\
& \mathrm{~N}_{2} 2(14.01 \mathrm{~g} / \mathrm{mad})=28.02 \mathrm{~g} \text { made } \mathrm{Nz}
\end{aligned}
$$

$$
\begin{aligned}
& T=24.6{ }^{\circ} \mathrm{C}+273.15=297.75 \mathrm{KV} \quad 4 \quad=0.2410 \text { moles } \mathrm{N}_{2} \\
& R=0.0821 \frac{\mathrm{hatm}}{\mathrm{mak}}
\end{aligned}
$$

$$
\frac{P r}{y}=\frac{n R T}{x}
$$

$$
\begin{aligned}
& =0.263{ }_{0}^{0} 11978 \mathrm{~atm} \\
& =0.263 \mathrm{~atm}
\end{aligned}
$$

Combined Gas taw Problems (Changing Conditions)
Two gas law formulas Combined
$\underset{\substack{\text { All come } \\ \text { from } \\ \text { Conned } \\ \text { Cos Law }}}{ } \begin{cases}\text { Boles Law } & P_{1} V_{1}=P_{2} V_{2} \\ \text { Charles Law } & \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}\end{cases}$
$\frac{P V}{n T}=\frac{R R P}{R T} \quad$ solve for R

$$
\frac{P V}{n T}=R \quad \frac{\text { atm } L}{\text { mole } K}=\frac{L \text { atm }}{\text { mole } K}=R
$$

$1^{\text {st }}$ Conditions $\quad 2^{\text {nd }}$ Conditions

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=R \quad \frac{P_{2} V_{2}}{n_{2} T_{2}}=R
$$

$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \quad$ Combined Gas Law
ε_{x}
A weather balloon is filled to a volume of 250. L at 1.00 atm and $25^{\circ} \mathrm{C}$. The balkon is released and reaches an altitude distraction of 1.5 mites where the pressure is 0.852 atm and temp is $-16.0^{\circ} \mathrm{C}$. What is the new volume of the balloon?

$$
\begin{aligned}
& P_{2}=0.852 \text { atm } \\
& T_{2}=-16.00^{\circ} \mathrm{C}+273.15=257.15 \mathrm{k}- \\
& n_{2}=n_{1}
\end{aligned}
$$

$$
\text { i } \quad V_{2}=?
$$

$$
\begin{aligned}
& P_{1}=1.00 \text { atm } \\
& T_{1}=25^{\circ} \mathrm{C}+273.15=298.15 \mathrm{~K} \\
& n_{1}=x \\
& V_{1}=250 . \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& n_{2} T_{2} \times \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \times n_{2} T_{2} \\
& \frac{1}{P_{2}} \times \frac{P_{1} V_{1} n_{2} T_{2}}{n_{1} T_{1}}=P_{2} V_{2} \times \frac{1}{P_{2}^{\prime}} \\
& \frac{P_{1} V_{1}, R_{2} T_{2}}{P_{2} R_{1} T_{1}}=V_{2}
\end{aligned} \quad V_{2}=\frac{P_{1} V_{1} T_{2}}{P_{2} T_{1}} . \quad . \quad . \quad .
$$

$$
\begin{aligned}
& V_{2}=\frac{(1.00 \mathrm{ath})\left(250^{3}+(5)\left(25 \frac{3}{3} .151 / 2\right)\right.}{\left(298.15 k^{2}\right)} \\
& V_{2}=253.076680 \mathrm{~L} \\
& V_{2}=253 \mathrm{~L}
\end{aligned}
$$

εx
Scuba diver runs out of air at 150 . ft under water. He panics \& tries to hold his breath as he makes his way to the surface.
Lungs hold ~ 4 hair. How much would the air in his lungs expand as he

Op late
 Rises. $\quad 33 \mathrm{ft}=$ late

$$
\begin{aligned}
& P_{2}=1 \mathrm{~atm} \\
& Y_{2}=? \\
& n_{2}=x \\
& T_{2}=x
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=150 \mathrm{ft} \times \frac{1 \mathrm{ctm}}{33 \mathrm{st}}=4.545 \overline{4} \mathrm{~atm} \\
& v_{1}=4.0 \mathrm{~L} \\
& n_{1}=x \\
& T_{1}=x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{F_{1} X_{1}}=\frac{P_{2} V_{2}}{P_{2} V_{2}} \\
& \frac{P_{1} V_{1}}{P_{2}}=\frac{P_{2} V_{2}}{P_{2}^{n}} \\
& V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{(4.5454 \operatorname{atan}(4.0 \mathrm{~L})}{(1.0 \operatorname{atm})} \\
& =18.181 \overline{5} L \\
& =18 \mathrm{~L}
\end{aligned}
$$

